Problemas comentados

A cargo del Club Matemático

De vez en cuando, muy pocas veces, nos llegan correos estimulantes, pues nos dan a conocer que hay compañeros que no sólo leen nuestra sección sino que, además, la utilizan en su trabajo diario. En este caso nos escribe el estimado amigo Enrique Freaza y nos indica lo siguiente, que sometemos a la consideración de nuestros lectores:

Estimados compañeros:

Antes que nada enviarles un cordial saludo y felicitarles por el contenido de la Sección que llevan en la revista.

Estoy utilizando con frecuencia los problemas que proponen en el Grupo de Detección y estímulo del Talento Precoz en Matemáticas, resultando problemas en los que se aborda el trabajo con contenidos muy interesantes y que dan mucho juego.

Hace un par de semanas propuse al grupo de 3º y 4º de la ESO, que resolvíéramos el problema Nº 12 de los propuestos y resueltos en el NÚMEROS de junio de 2003:

«Sea la serie de números: 969, 486, 192, 18, 8...........¿Qué número es el menor que en cuatro pasos da como término final el 6?»

Tras analizar diversos ejemplos, llegamos entre todos a la conclusión de llevar a cabo una estrategia de «atrás hacia adelante» (tal como proponen ustedes resolver)

Para mi sorpresa, a los pocos minutos una alumna de 4º de ESO, Beatriz Suárez, me llamó para indicarme la solución 377:

377......3x7x7=147........1x4x7=28...........2x8=16...........1x6=6........Me sorprendió la rapidez con que lo hizo y que contradijera la solución propuesta y le pregunté cómo había llegado a esa conclusión, diciéndome ella que lo había encontrado por intuición; a mi pregunta de si estaba segura de que era el menor número posible, me dijo que no podía estar segura.

Como el proceso que seguían otros alumnos se prolongaba, les propuse que lo realizaran en casa y pasamos a otras actividades.

Analizando el proceso que proponen ustedes, me di cuenta que habría que contemplar en el tercer paso los números de tres cifras resultantes

Números.
Volumen 56, diciembre de 2003, páginas 57-64
de colocar un 1 delante de los de dos cifras propuestos: Añadimos así los números:

128, 144, 148, 182, 184, 147, 168, 174, 186........... el 147 nos lleva a la solución propuesta por Beatriz.

128 = 2^7ejemplos......288
 (número mínimo que da lugar al 128)

144 = $2^4\times3^2$.................ejemplos....289
 (número mínimo que da lugar al 144)

148 = $2^2\times37$ (eliminado)

182 = $2\times7\times13$ (eliminado)

184 = $2^3\times23$ (eliminado)

147 = $3\times7\times7$.................ejemplo.....377
 (número mínimo que da lugar al 147)

168 = $2^3\times3\times7$.................ejemplo.....467
 (número mínimo que da lugar al 168)

174 = $2\times3\times29$ (eliminado)

186 = $2\times3\times31$ (eliminado)

Si chequeamos cada uno de los cuatro casos resultantes:

288.....$2\times8\times8=128$......1x2x8=16........1x6 =6 (son tres pasos)

289.....$2\times8\times9=144$........1x4x4=16........1x6 =6 (son tres pasos)

377.....$3\times7\times7=147$........1x4x7=28......2x8=16......1x6 =6 (son cuatro pasos)

467.....$4\times6\times7=168$..........1x6x8=48......$4\times8=32$.......3x2=6 (son cuatro pasos, pero 377 es menor)

Si se quisiera añadir al problema la condición de que sea un número de 4 cifras, habría que introducir como posibles, a los que proponen a continuación, los que resultan de colocar un 1 delante de estos cuatro, por tanto 1288, 1289, 1377 y 1467......

y también 1478, 1487, 1748, 1784, 1847 y 1874., pero ya sería enrollar demasiado, ¿no?.
Al proponerles a los chicos, que siguiéramos explorando estas posibilidades, ya estaban un poco aburridos del problema, por lo que lo dejamos ahí.

Esperando que le encuentren utilidad a nuestras observaciones, me despido hasta la próxima:

Enrique Freaza

Como han visto resulta un buen complemento al problema propuesto en su día y que hace ver con otros ojos – los de una alumna excelente, por lo que se aprecia- lo que en su momento indicamos como solución. En cierto modo, esto corrobora lo que siempre hemos defendido: no puede estar en nuestras manos la solución perfecta o total a un problema propuesto. Hay que trabajarlos, exprimirlos hasta sacar toda su riqueza; y si lo hacemos con nuestros alumnos... ¡qué mejor tarea y qué mayor satisfacción!

Gracias Enrique. Que cunda el ejemplo y nos escriban más compañeros.

Otra sorpresa agradable la hemos tenido al dar un vistazo al número 218 de la revista “Jornal de Matemática Elementar”, editada en Lisboa en septiembre de 2003 y dirigida por Sérgio Macias Marques. En su página 17 encontramos una referencia a nuestra sección de “Problemas comentados” en la revista NÚMEROS. Recogen en dicha página los aspectos más importantes de nuestro primer artículo y los problemas del segundo con el fin de proponer a sus propios lectores que se animen a resolverlos y comentarlos, pidiendo también que transmitan sus experiencias con problemas semejantes.

Nos alegra mucho saber que, aunque nuestros lectores más cercanos nos escriben poco, hay otros más lejanos que nos leen y aceptan el reto de nuestras propuestas.

En este artículo quisiéramos hablar un poco de Matemagía como recurso para el aula de Matemáticas.

La palabra Matemagía la vimos por primera vez en los escritos de MARTÍN GARDNER y nos gustó. En su libro “Nuevos pasatiempos matemáticos” (Alianza, 1972) la hace equivaler a la expresión “trucos de magia con fuerte fundamento matemático”. En el libro “Comunicación extraterrestre y otros pasatiempos matemáticos” (Catedra, 1986) la define como “trucos de magia que están basados, total o parcialmente, en principios matemáticos” y también indica que el primer libro cuyo tema es este campo fue “Mathemagic” (Dover, 1953), de Royal Vale Heath.
En los trucos de Matemagia se ponen de manifiesto algunas propiedades matemáticas muy interesantes: la relación entre las potencias y las raíces, la numeración en otras bases,... Todas ellas encaminadas fundamentalmente a la búsqueda de estrategias personales de cálculo.

Disponer de una provisión de estos trucos, adecuados y suficientes, bien estructurados y analizados matemáticamente potencia la labor del profesor. Tales elementos matemágicos tienen más de una finalidad.

a) Permiten centrar la atención de los alumnos sobre un tema que va a ser explicado, practicado o ampliado.

b) En cada vez más frecuentes ocasiones, los alumnos tienen sus mentes en un estado “divergente”, por la hora del día en la que tienen la asignatura, por ser entrada o salida de un recreo, por estar entre dos actividades extraescolares, o por alguna otra razón, el todo es que el alumno no “entra” en la clase, está distraído, ausente. ¿Qué mejor recurso que un truco de magia para atraer su atención? Y si el truco está bien elegido, sirve además para conectar con lo que estamos o tenemos intención de explicar.

c) Otras veces es, simplemente, porque ese día nos “nace” tener una clase un poco lúdica, que no todo ha de estar tan planificado y rígido que nos impida llevarnos por sentimientos o sensaciones.

El uso de este recurso puede disminuir el rechazo hacia la asignatura de matemáticas. Podríamos usar parte del tiempo de la clase para introducir algunos de estos aspectos en el trabajo diario de aula.

Los principales problemas que se presentan ante esta decisión se pueden identificar con estas preguntas: ¿Cuándo? ¿Cómo? ¿Dónde? ¿Con qué medios? ¿Sólo o en equipo? ... Las soluciones vienen dadas por la propia experiencia. Algunas respuestas posibles pueden ser las siguientes.

¿Cuándo?

Desde la primera semana de clases.

Cuando los alumnos están aprendiendo la “mecánica” de la clase.

Mientras se muestran receptivos a todo.

No hay que esperar a nada ni a nadie. Desde el primer momento debemos lanzarnos o siempre encontraremos disculpas para no hacerlo.

Pero no olvidar que lo podemos hacer también en cualquier momento, cuando nuestros alumnos no lo esperen, cuando nos apetece a nosotros, cuando el desarrollo de la clase lo precisa.
Debemos jugar siempre con algo programado (lo esperado) y con algo sorpresivo (lo no esperado).

¿Dónde?

En el aula ordinaria, en el aula de psicomotricidad, en el patio de recreo, en el salón de actos, en los pasillos, en una excursión, en...

En donde deseemos. En donde podamos. Cualquier lugar es bueno. Y mejorable, también...

A partir de algunos de estos trucos matemáticos se puede desarrollar una investigación espléndida, con todas las características que ello implica. Los cuadros mágicos, sus propiedades, sus características, su construcción. El lenguaje algebraico, su utilización para codificar mensajes numéricos a partir de números desconocidos, el planteamiento de ecuaciones sencillas, la resolución de problemas de ecuaciones. Los sistemas de numeración, sus tipos, el uso de los sistemas posicionales, los algoritmos de las operaciones y su relación con los respectivos sistemas, los problemas de pesadas. El mundo de los dados, sus características y propiedades, el azar, la probabilidad. La geometría, la topología. Cualquier campo es posible de ser tratado. Basta con elegir el truco o los trucos adecuados, que provoquen el interés y el deseo de saber más sobre ese misterio puesto de manifiesto.

Y ahora vamos con los problemas propuestos en el número anterior. Eran éstos:

Problema nº 17

Un supersticioso tiene 159 monedas. Para evitar que se las roben, las dispone en montones de 13 y de 17, pues cree que estos números “nefastos” detendrán a posibles ladrones. ¿Cuántos montones de monedas ha formado?

Este problema se parece mucho en su enunciado al que propusimos en **NÚMEROS** con el número 14. Tiene la misma estructura; ¿por qué, entonces, no se puede resolver de la misma manera?

Una manera de representar el total de monedas, dividido en dos grupos, es el siguiente

\[13 \cdot a + 17 \cdot b = 159 \]

Se trata de una manera algebraica, porque representamos los números de montones mediante las letras a y b.
La letra a ha de ser un número menor que 13, porque $13 \cdot 13 = 169 > 159$. Del mismo modo, la letra b ha de ser un número menor que 10, porque $17 \cdot 10 = 170 > 159$.

Por tanto, para resolver el problema hemos de tantear los distintos valores de una de las letras (a) y comprobar si es compatible con alguno de los posibles valores de la otra letra (b).

Lo dispondremos según la siguiente tabla:

<table>
<thead>
<tr>
<th>Valor de a</th>
<th>Valor de $13 \cdot a$</th>
<th>Valor de $159 - 13 \cdot a$</th>
<th>Comentario</th>
<th>Valor de b</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>169</td>
<td>...</td>
<td>Excede el total</td>
<td>...</td>
</tr>
<tr>
<td>12</td>
<td>156</td>
<td>3</td>
<td>No llega a 17</td>
<td>...</td>
</tr>
<tr>
<td>11</td>
<td>143</td>
<td>16</td>
<td>No llega a 17</td>
<td>...</td>
</tr>
<tr>
<td>10</td>
<td>130</td>
<td>29</td>
<td>No es múltiplo de 17</td>
<td>...</td>
</tr>
<tr>
<td>9</td>
<td>117</td>
<td>42</td>
<td>No es múltiplo de 17</td>
<td>...</td>
</tr>
<tr>
<td>8</td>
<td>104</td>
<td>55</td>
<td>No es múltiplo de 17</td>
<td>...</td>
</tr>
<tr>
<td>7</td>
<td>91</td>
<td>68</td>
<td>$17 = 4 \cdot 68$</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>78</td>
<td>81</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>5</td>
<td>65</td>
<td>94</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Comprobación: $13 \cdot 7 + 17 \cdot 4 = 91 + 68 = 159$.

Deberían ser 4 montones de 17 y 7 de 13.

Problema nº 18

Halla el número entero más pequeño tal que, si la cifra de su extremo izquierdo se mueve a su extremo derecho, el nuevo número es tres veces y media el número original.

(Tomado de Mathematical Bafflers, Ed. Angela Dunn, 1964)

Supongamos que el número buscado es $abcd ... z$.

Entonces: $2 \cdot bcd ... za = 7 \cdot abcd ... z$,

y suponiendo que tiene $k + 1$ cifras:

$$2 \cdot (b \cdot 10^k + c \cdot 10^{k-1} + d \cdot 10^{k-2} + ... + z \cdot 10 + a) = 7 \cdot (a \cdot 10^k + b \cdot 10^{k-1} + ... + z)$$

y pasando al primer miembro los productos de b, c, d, etc., y dejando en el segundo los de a: 62
\[b(2 \cdot 10^k - 7 \cdot 10^{k-1}) + c(2 \cdot 10^{k-1} - 7 \cdot 10^{k-2}) + ... + z(20 - 7) = b(13 \cdot 10^{k-1}) + c(13 \cdot 10^{k-2}) + ... + z(13) = a(7 \cdot 10^k - 2) \]

Es decir:

\[b(20 \cdot 10^{k-1} - 7 \cdot 10^{k-1}) + ... = b(20 - 7) \cdot 10^{k-1} + ... = b(13 \cdot 10^{k-1}) + ... = b(13 \cdot 10^{k-1}) + c(13 \cdot 10^{k-2}) + ... = a(7 \cdot 10^k - 2) \quad (A) \]

Dado que el número primo 13 divide al primer miembro de la igualdad, también debe dividir al segundo miembro, y en particular al segundo factor \(7 \cdot 10^k - 2\). Comprobando sucesivamente los valores \(7 \cdot 10 - 2 = 68\) (para \(k = 1\)), 698 (para \(k = 2\)), 6998, 69 998 y 699 998, es éste último el primero en ser divisible por 13. Así que \(k = 5\) y el número buscado tiene 6 cifras: abcd ef. Sustituyendo en (A):

\[130 000b + 13 000c + 1 300d + 130e + 13f = 699 998 \cdot a \]

\(b c d e f = 53 846 \cdot a\). Hacemos \(a = 1\) para minimizar su valor, con lo que el número buscado es el

\[153 846 \]

Comprobamos que 538 461 = 3.5\cdot 153 846.

Si considerásemos números negativos, no habría un mínimo.

A la hora de plantear nuevos problemas se nos han ocurrido dos motivaciones diferentes: la matemagia por un lado y los diferentes modos de pensamiento de nuestros alumnos y alumnas.

Una de las cosas que se nos han ocurrido consiste no tanto en plantear un problema para ser resuelto, sino plantear un problema e investigar cuántas maneras diferentes hay para resolverlo. A partir de una situación problemática rica, aunque sencilla, tratar de ver las diferentes maneras de afrontarlo, las distintas estrategias posibles para acercarse a su resolución. En el fondo, todas ellas girarán alrededor de una idea central básica contenida ya en la situación descrita en el problema, pero ¿por qué no exploramos así este

Problema n° 19

En un periódico diario, formado por un solo cuadernillo de hojas y en el cual 11 páginas están dedicadas al deporte, las páginas 20 y 45 se encuentran sobre la misma cara de una de las hojas. ¿Cuántas páginas tiene ese diario en total?

¿Qué les parece? Resolverlo de todas las maneras posibles, utilizando todas las técnicas que se nos ocurran. ¿Por qué no se lo plantea a sus alumnos y recoge la experiencia?
La otra ocurrencia, aprovechando el tema central de este artículo (la Matemagia), ha sido buscar dos problemas relacionados de alguna manera con este campo.

Problema n° 20

El Matemago pide al espectador que, con la ayuda de una calculadora, eleve un número de dos cifras a su quinta potencia. El hallará su raíz quinta rápidamente.

¿En qué puede consistir el truco del mago? Exige un pequeño esfuerzo de memorización.

Problema n° 21

En esta ocasión el Matemago pide a un voluntario del público que escriba un número de 4 cifras, sin enseñarlo. A su lado debe escribir la suma de sus cifras y encima el número de tres dígitos que resulta de tachar una de las cifras del número que escribió ("la que menos le guste"). Ahora debe efectuar la resta y, simplemente por el resultado de esta resta, el mago averigua el número de 4 cifras que escribió al principio. ¿Cómo se hace el truco? ¿En qué se basa?

Y aquí queda todo de momento. Hágannos caso. Escriban mensajes a esta sección y cuenten sus soluciones y experiencias o, si lo prefieren, propongan sus propios problemas. Ya ven que otros compañeros sí lo hacen.

Como siempre, estaremos atentos a sus noticias a la espera del próximo NÚMEROS.

Club Matemático.

El Club Matemático está formado por los profesores José Antonio Rupérez Padrón, del IES Canarias-Cabrera Pinto (La Laguna), y Manuel García Déniz, del IES Tomás de Iriarte (Santa Cruz de Tenerife).

mgarciaadeniz@sinewton.org / jaruperezpadron@sinewton.org