Ideas y Recursos para el Aula

Dificultades de Comprensión de la Aproximación Normal a la Distribución Binomial

Hugo Alvarado(1) y Carmen Batanero(2)
(1)Universidad Católica de la Santísima Concepción, Chile
(2)Universidad de Granada
(1)alvaradomartinez@ucsc.cl, (2)batanero@ugr.es

Resumen

La aproximación normal a la distribución binomial es un caso particular del teorema central del límite cuyas dificultades de comprensión han sido escasamente analizadas, a pesar de su importancia en estadística. En este trabajo analizamos la comprensión teórica y práctica de dicha aproximación alcanzada por un grupo de estudiantes de ingeniería después de un experimento de enseñanza apoyado en el uso de Excel.

Introducción

Supongamos que un experimento aleatorio que consta de n pruebas y tiene las siguientes características: a) En cada prueba del experimento sólo son posibles dos resultados: el suceso A (éxito) y su contrario A-1 (fracaso); b) El resultado obtenido en cada prueba es independiente de los resultados obtenidos anteriormente; c) la probabilidad de que ocurra el suceso A, p(A)=p es constante. Un experimento con las anteriores características tiene asociada una variable aleatoria X que expresa el número de éxitos obtenidos en las n pruebas y sigue el modelo de la distribución Binomial B(n,p). La probabilidad de que el número de éxitos sea exactamente k viene dada por (1), donde q=1-p.

(1)

La probabilidad (1) se hace difícil de calcular cuando crece el valor n, por lo que debe buscarse un valor aproximado. Pero la distribución binomial B (n,p) puede describirse también a partir de la suma de variables aleatorias idénticamente distribuidas, cada una de las cuáles toma un valor uno si un cierto suceso acontece y cero en caso contrario (variables de Bernoulli). Por tanto, para un valor n grande se podría aplicar a este caso particular el teorema central del limite (TCL) y aproximar la probabilidad (1) mediante la distribución normal. La comprensión de este aproximación y, en general del TCL ha sido escasamente investigada, especialmente en contextos instruccionales específicos.

Algunas excepciones son las investigaciones de Well, Pollatsek y Boyce (1990), Méndez (1991) y delMas, Garfield, y Chance (1999), quienes se interesan por la comprensión que tienen los estudiantes del TCL en su forma generalizada. Es decir, analizan si los estudiantes entienden que la media de una muestra aleatoria sigue una distribución normal, para un tamaño suficientemente grande de la muestra. En concreto se centran en tres propiedades de la distribución de la media muestral: a) la esperanza de la media muestral tiende a la media de la población; b) la varianza de la media muestral disminuye con el tamaño de la muestra; y c) la forma de la distribución de la media muestral se aproxima a la distribución normal, al aumentar el tamaño de la muestra. Los autores no estudian la problemática de aproximación de una distribución discreta (como la binomial) por otra continua (como la normal), ni las condiciones de aproximación o los errores de cálculo en la aplicación del teorema (por ejemplo, la tipificación).

En nuestra investigación hemos tratado de completar los estudios sobre el TCL, y otros sobre comprensión de la distribución normal de Tauber (2001), Batanero, Tauber y Sánchez (2004), Tauber, Batanero y Sánchez (2005). Más específicamente, presentamos un estudio de evaluación de la comprensión teórica y práctica de la aproximación normal a la distribución binomial, una vez finalizado un experimento de enseñanza, sobre el TCL. La enseñanza y el material didáctico preparado incluyó un tema sobre la aproximación de la distribución binomial por la normal y estuvo basado en conceptos teóricos del enfoque onto semiótico (Godino, 2003), así como uso de simulación con materiales manipulativos y ordenador, como refuerzo en la justificación del teorema. Un estudio previo histórico y de libros de texto (Alvarado 2004 a y b; Alvarado y Batanero 2006 a y b) sirvió para caracterizar los diversos significados del teorema y fijar el que se deseaba presentar a los estudiantes.

En lo que sigue, describimos resumidamente la parte del experimento de enseñanza dedicada al estudio de la aproximación normal a la distribución binomial y de la regla sobre bondad de la aproximación. Nos hemos interesado por esta problemática porque existen muchas situaciones modeladas por una distribución binomial, cuyo cálculo requiere la aproximación normal para valores grandes de su parámetro n. Su interés didáctico reside en la posible dificultad de aceptar que una distribución discreta (binomial) pueda aproximarse mediante una distribución continua (normal). Aunque la muestra participante está formada por estudiantes de ingeniería, este tema se incluye casi sin excepción en los cursos de estadística de cualquier carrera universitaria, por lo que pensamos los resultados podrían generalizarse a otros estudiantes.

La Aproximación Normal a la Distribución Binomial

La presentación directa del TCL en forma general, es decir, sin tener en cuenta la distribución de las variables que intervienen en su enunciado, lleva directamente a los ejercicios algebraicos sobre la distribución de la suma y la media de variables aleatorias y su demostración formal, mediante la función generadora de momentos, es muy abstracta para la mayoría de estudiantes. Tampoco muestra la evolución histórica del teorema, que comienza con el estudio de la suma de variables Bernoulli (Alvarado y Batanero, 2006a), es decir, precisamente con la aproximación de la distribución binomial. La primera versión del TCL debida a Laplace De-Moivre, en forma simplificada puede expresarse en la forma siguiente:

Teorema de Laplace De-Moivre: Sea Xi una variable de Bernoulli y una variable con distribución Binomial, B(n, p) cuya esperanza matemática es E(Sn)=np y cuya varianza es Var(Sn)=npq. Cuando n tiende a infinito, la función distribución de Sn tiende a la distribución normal con las mismas media y varianza, esto es N (np, npq).

El teorema de Laplace De-Moivre puede servir de introducción a la forma más general del TCL, generalizando sucesivamente el tipo de variables a que puede aplicarse. Respecto al valor de n requerido para una correcta aproximación de la distribución binomial, los textos no siempre están de acuerdo. Aunque, en general, se acepta que “Si n es mayor que 30 se puede usar el TCL” (Montgomery y Runger, 1996, pp. 303), la bondad de la aproximación depende también de p, para algunos de cuyos valores. incluso muestras de tamaño 40 o 50 no son suficientes, aunque “la aproximación normal a la distribución binomial será buena si np y nq son mayores o iguales a 5” (Walpole y Myers, 1999, pp. 217).

Descripción del Proceso de Estudio

La experiencia que vamos a describir formó parte de curso de Estadística, en el segundo año de estudios de ingeniería en la Universidad Católica de Concepción (Chile) y los estudiantes habían tomado previamente un curso de cálculo de probabilidades en el primer año. El tiempo dedicado al estudio del Teorema de Laplace De-Moivre fue de ocho sesiones de 80 minutos, seis de las cuales se realizaron en el aula tradicional con apoyo de pizarra, ordenador y cañón multimedia y dos de laboratorio, trabajando con Excel. Participaron 134 alumnos, aunque sólo 123 completan la segunda parte de la evaluación.

Las sesiones estuvieron centradas en resolución de problemas, partiendo de situaciones con materiales manipulables, y siguiendo con otras de la vida cotidiana o la ingeniería. Se utilizaron tres tipos de configuraciones en la enseñanza: que suponen un significado muy diferenciado, incluso para un mismo problema. En la Figura 1 presentamos un ejemplo de las actividades realizadas en cada una de estas configuraciones que se describen a continuación:
Actividad 1: Simulación con fichas. Una caja contiene 4 fichas de las cuales 2 son verdes. Simula la extracción n veces de una ficha con reemplazo. A continuación simula m muestras de tamaño n; (n, m) = (4,5), (10,1), (10,10) y (30,10). Para cada una de ellas: a) Construye una tabla de distribución de frecuencias del número de fichas verdes obtenidas; b) Realiza un gráfico de barras y comenta sus características; c) Compara la media y varianza del experimento con la media y varianza teórica.

Actividad 2: Representa gráficamente en el ordenador la distribución B(n,p) para distintos valores de sus parámetros n y p. Manteniendo constante p = 0.3 compara las distintas gráficas para n = 4, 8, 24. Manteniendo p = 0.1 compare las gráficas para n = 4, 8 y 50. ¿Cómo varían las gráficas para los distintos valores de los parámetros?

Actividad 3: Supongamos que un sistema está formado por 100 componentes cada una de las cuales tiene una confiabilidad igual a 0,95 (probabilidad de que la componente funcione correctamente). Si esas componentes funcionan independientemente una de otra, y si el sistema completo funciona correctamente cuando al menos funcionan 80 componentes, ¿Cuál es la confiabilidad del sistema?
Figura 1. Ejemplos de actividades en las distintas configuraciones

Con esta combinación de actividades, se inicia intuitivamente una primera versión del TCL (Teorema de Laplace De-Moivre), comenzando por la simulación con materiales manipulables, luego con la graficación de la distribución B(n,p) para distintos valores de sus parámetros n y p con ordenador y simulación de algunos experimentos. Todo ello sirve para introducir y discutir intuitivamente la idea de convergencia, que es estudiada posteriormente en forma analítica, haciendo también un estudio detallado de la bondad del ajuste para diferentes valores de p y n y el problema de corrección de continuidad. Se pretende que los estudiantes de ingeniería aprendan a razonar a partir de los datos empíricos, consideren la posibilidad de aplicación o no del teorema a diversos problemas, según los valores de p y tamaños muestrales y evalúen el riesgo al tomar decisiones en ambiente de incertidumbre.

Evaluación y Resultados

En lo que sigue presentamos los resultados de una evaluación llevada a cabo unas tres semanas después de la enseñanza, que consta de algunos ítems (134 estudiantes respondieron el cuestionario) y un problema abierto de aplicación (resuelto por 123 estudiantes).

Resultados en los ítems

Los ítems 1, 2, 3 son de opción múltiple, así como el 5, que tiene también una parte de justificación y el ítem 4 consta de dos preguntas de Verdadero/ Falso. El ítem 1 evalúa el reconocimiento de las condiciones que han de cumplir n y p para que la aproximación de la distribución binomial a la normal sea suficientemente precisa; el ítem 2, evalúa el conocimiento de la aplicación de la corrección de continuidad; el ítem 3 estudia la bondad de aproximación en diferentes posiciones del rango de la variable; el ítem 4 se refiere a las condiciones que aseguran la rapidez de la convergencia y el 5 es una variante del problema de Kahneman, Slovic y Tversly (1982) sobre heurística de la representatividad, por la que se supone que los sujetos no tienen en cuenta el tamaño muestral al analizar la convergencia de la frecuencia a la probabilidad. Hemos marcado en negrita las soluciones correctas.

Los resultados (Ver tablas 1 a 5) indican que las siguientes propiedades resultaron sencillas a los estudiantes: importancia del tamaño muestral en la precisión de la aproximación (ítem 4a), corrección de continuidad (ítem 2); sensibilidad de los parámetros (ítem 4b); la aproximación mejora en los valores centrales de la distribución (ítem 3); condiciones de la precisión de aproximación (ítem 1).

En cuanto a los errores más frecuentes fueron los siguientes: 31% no percibe la importancia de los valores de los parámetros (ítem 4b) para la rapidez de la convergencia, un 24,7% espera mejor exactitud en la convergencia en valores alejados de los centrales (diversos distractores del ítem 3); un 21 % presenta confusión sobre los límites de la corrección de continuidad al calcular la probabilidad (opciones a) y d) del ítem 2); el 19% sólo tiene en cuenta el tamaño muestral y no el parámetro (ítem 1d), un 16% confunde las condiciones del parámetro para la aproximación (ítem 1b y 1e); un 5% considera que la aproximación es buena para tamaños pequeños de muestra (ítem 1a); un 5% (ítem 2e) tiene problemas en traducir el lenguaje a una desigualdad.

Tabla 1. Item 1 y resultados (n=134)
Ítem 1. La aproximación normal a la distribución binomial B(n,p) es suficientemente buena cuando:
  Frecuencia Porcentaje
a) n es menor que 30 y np aproximadamente igual a 5 7 5,2
b) n es mayor que 30 y p menor que 0,05 18 13,4
c) n es mayor que 30 y p aproximadamente igual a 0,5 80 59,7
d) n mayor que 30 y cualquier p 26 19,4
e) n mayor que 30 y p igual a 0,9 3 2,2

Tabla 2. Item 2 y resultados (n=134)
Ítem 2. Sean Xi=0 si un producto es defectuoso y Xi =1 si el producto está correcto. En un lote de 30 de estos productos queremos calcular la probabilidad de que 25 al menos sean correctos, aproximando por la normal. La corrección de continuidad para el cálculo implica que tenemos que calcular:
  Frecuencia Porcentaje
a) 25 18,7
b) 99 73,9
c) 0 0,0
d) 3 2,2
e) 7 5,2


Tabla 3. Item 3 y resultados (n=134)
Ítem 3. La aproximación normal mejora cuando el intervalo a calcular en probabilidad:
  Frecuencia Porcentaje
a) Se acerca al extremo superior de valores de la distribución binomial 12 9,0
b) Se aparta del término central de valores de la distribución binomial 11 8,2
c) Se acerca al extremo inferior de valores de la distribución binomial 10 7,5
d) Se acerca al término central de valores de la distribución binomial 88 65,7
No responden 13 9,7


Tabla 4. Item 4 y resultados (n=134)
Ítem 4. La rapidez con la que la suma de variables aleatorias
se aproxima a la distribución normal depende:
Frecuencias
V F
Porcentaje
de aciertos
a) Del tamaño de la muestra n 127 7 94,8
b) De los valores de los parámetros 93 41 69,4


Tabla 5. Item 5 y resultados (n=134)
Ítem 5. La experiencia indica que 50% de todos los estudiantes en un curso cometerán errores de programación, ¿Cuál de estos casos te parece más probable? Indica por qué has elegido esta opción:
  Frecuencia Porcentaje
a) Que entre los próximos 10 estudiantes seleccionados 8 o más cometan errores de programación. 13 9,7
b) Que entre los próximos 100 estudiantes seleccionados 80 o más cometan errores de programación. 12 9,0
c) Las dos cosas anteriores son igual de probables. 74 55,2
No responden 35 26,1

Destacamos el gran número de errores en el ítem 5, donde sólo un 10% consideró más probable el caso de muestra más pequeña. Es decir, de acuerdo con Kahneman y Tversky (1982), se presenta en un 55% la heurística de la representatividad, no diferenciando el tamaño de la muestra en el cálculo de probabilidad, por lo que parece que esta heurística es difícil de erradicar, incluso después de un estudio formal del tema, apoyado por la simulación. Cabe señalar que, el 92% de los alumnos justificaron en palabras su respuesta y el 8% mediante fórmulas, aunque no usan la corrección de continuidad.
Resultados en problemas abiertos
Además de los ítems anteriores, se propuso a los estudiantes el problema abierto 1 para valorar probabilidad de pensamiento de más alto nivel (Gal, 1997).

Problema 1. Un ingeniero ha comprobado que 45 de los 150 accidentes industriales en su planta, en los últimos cinco años, se deben a que los empleados no siguen las instrucciones. a) Determina la probabilidad aproximada de que de 84 nuevos posibles accidentes, entre 20 y 30 se deban a negligencia de los empleados; b) Compara con el valor exacto de la probabilidad anterior, determinada mediante la probabilidad Binomial, que es 0,81023; c) Calcula la probabilidad aproximada de obtener, en una muestra aleatoria de 120 accidentes industriales, más de un 35% que se deban a negligencia de los empleados; d) Calcula el tamaño de muestra necesario para que la estimación difiera de la verdadera probabilidad en menos de 4,5% con probabilidad al menos 0,96.

En el apartado a) los estudiantes han de definir la variable aleatoria “número de empleados que no siguen las instrucciones en la muestra de 84 accidentes” e identificar la distribución Binomial, determinando los parámetros, n=84, p=0,3. Debido a que la muestra es grande, y se cumplen los supuestos (n grande, np>5), se puede aproximar mediante una distribución normal de media np y varianza npq, es decir N (25,2; 17,6). Para calcular la probabilidad estimada hay que tipificar y aplicar la corrección de continuidad, esto es:

.

En el apartado b) se pretende que el alumno compare los valores del cálculo aproximado y exacto de las probabilidades; justificando el teorema por el valor grande de n y la convergencia rápida de la aproximación para valores de p cercano a ½.

El apartado c) es similar al a) con la diferencia que se hace referencia a la proporción p, en lugar del al número de éxitos. La distribución de la proporción puede obtenerse directamente de la binomial, mediante un cambio de variable o interpretarse como promedio muestral. En ambos casos puede aplicarse el TCL y seguir pasos similares a los del apartado a) para resolverlo. Esto es, se debe pasar de N(36;25,2) a la expresión .

Por último la parte d) pide identificar el error e=0,045 y el nivel de confianza de 1-a=0,96 y estimar el tamaño muestral adecuado, mediante la expresión . Es decir, se ha de despejar n de la fórmula del intervalo de confianza de la proporción, que los estudiantes conocían de un tema anterior y usar la aproximación normal para hallar el valor crítico Z . Si se utiliza p=1/2 el tamaño necesario aumenta a 522.

En la Tabla 6 presentamos los resultados, donde vemos que, aunque 116 estudiantes llegan a identificar la distribución binomial y expresar la probabilidad a calcular en el apartado a), se producen algunos errores en la identificación de n y p. La mayor parte de los estudiantes es capaz de tipificar la variable para pasar a la distribución normal, pero muchos confunden la fórmula de la media o varianza, por lo que sólo 55 llega a la aproximación normal correcta y, de ellos, muy pocos (21) aplican la corrección de continuidad correctamente. Los principales errores al aplicar la corrección de continuidad fueron sumar el valor 0,5 (en vez de restar) o viceversa, sumar un valor 1 (en lugar de 0,5) o bien no usar la corrección.

Tabla 6. Resultados en cada apartado del problema (n=123)
Apartado Pasos correctos en la resolución del problema n %
1 Identificar la distribución de probabilidad binomial 116 94,3
Determinar los parámetros n y p de la distribución binomial 108 87,8
Transformar la v.a. en una Normal estándar 103 83,7
Aproximación de a la distribución Normal 55 44,7
Cálculo correcto de la media y varianza de la normal aproximada 55 44,7
Aplicar la corrección de continuidad 21 17,1
 
2 Comparar los valores aproximado y exacto de 94 76,4
Justificar el TCL para valores grandes de n 31 25,2
Justificar la convergencia rápida del teorema para valores de p cercano a ½ 1 0,8
 
3 Determinar la esperanza y varianza del estimador 81 65,9
Estandarizar el estimador 78 63,4
Calcular la probabilidad pedida 74 60,2
Reconocer el estimador de la proporción p como el promedio muestral 34 27,6
Obtener la distribución aproximada del estimador de la proporción p 31 25,2
Justificar el uso del TCL 17 13,8
 
4 Reconocer y expresar el error en valores de 0 a 1 92 74,8
Calcular el tamaño de muestra mediante la fórmula 82 66,7
Identificar el valor de p 78 63,4


En el apartado b) 94 estudiantes comparan los valores aproximado 0,8092 y exacto 0,8102 de la probabilidad, indicando correctamente su buena aproximación, aunque sólo 31 de ellos comentan que la excelente aproximación se debe al valor grande de la muestra (84) y sólo uno comenta la influencia del parámetro p= 0,3 no alejado de ½ .

En el apartado c) 81 estudiantes determinan correctamente la media y varianza de la distribución muestral de la proporción y 78 llegan a estandarizar correctamente, de los cuáles 74 calculan la probabilidad pedida. De ellos, sólo 31 hacen referencia explícita a la distribución normal aproximada de la proporción y 17 de ellos justifican explícitamente el uso del TCL; en otros casos los alumnos calculan correctamente los parámetros y tipifican, aunque no hacen referencia al teorema. Un grupo de alumnos (34) explícitamente hace referencia a la proporción como promedio, mientras el resto deduce directamente la distribución a partir de una transformación de la binomial.

Por último en d) 82 estudiantes encuentran el tamaño de muestra adecuado, mediante la fórmula correspondiente aunque unos pocos no identifican el valor p, sino usan el valor ½ (caso más desfavorable).
 

Conclusiones


El análisis a priori de los ítems y problema propuesto en la evaluación muestra la alta complejidad de la aproximación binomial a la normal y de su aplicación en la resolución de problemas. A pesar de ello, una alta proporción de alumnos en nuestra investigación reconocen la variable aleatoria binomial como suma de variables de Bernoulli; comprenden el efecto de los parámetros sobre la precisión de aproximación (forma de la distribución, sensibilidad de los parámetros y variabilidad para distintos tamaños muestrales), son capaces de calcular y comparar probabilidades aproximadas y exactas para valores del número y proporción de éxitos y calculan el tamaño de muestra para una precisión dada. Pero también aparecen una multiplicidad de errores, especialmente en la resolución del problema que llevan a una solución incorrecta del mismo.

Habría que reforzar la comprensión de la corrección de continuidad y relacionar más la convergencia de este caso particular con el enunciado general del Teorema central del limite, así como dedicar más tiempo al tema, pues los estudiantes confunden en ocasiones las varianzas de la media y la proporción o hacen errores al tipificar la variable. Destacamos también que la heurística de la representatividad no mejoró en estos estudiantes, respecto a lo descrito en la bibliografía, a pesar del uso de la simulación. Posiblemente se requieran situaciones específicas en las que se confronte explícitamente a los estudiantes con esta heurística, si queremos mejorar sus intuiciones y no sólo el conocimiento formal sobre el tema.

Agradecimiento: Grupo PAI FQM126, Junta de Andalucía y Proyecto SEJ2004-00789, MEC; Madrid.

 

Referencias

Alvarado, H. (2004a). Significado y comprensión de un teorema estadístico: Elementos básicos en el desarrollo profesional del profesor para una buena enseñanza. Boletín de Investigación Educacional, 19(1), 227-244.

Alvarado, H. (2004b). Elementos del significado del TCL en textos de estadística para ingenieros. Memoria de Tercer Ciclo. Universidad de Granada.

Alvarado, H. y Batanero, C. (2006a). El significado del TCL: evolución histórica a partir de sus campos de problemas. En A Contreras (Ed.), Investigación en Didáctica de las Matemáticas (pp. 13-36). Granada: Grupo FQM126.

Alvarado, H. y Batanero, C. (2006b). Designing a study process of the central limit theorem for engineers. En A. Rossman y B. Chance (Eds.), Proceedings of ICOTS-7. Salvador (Bahia): International Association for Statistical Education. CD ROM.

Batanero, C., Tauber, L. y Sánchez, V. (2004). Student’s reasoning about the normal distribution. En D. Ben-Zvi y J.B. Garfield (Eds), The challenge of developing statistical literacy, reasoning, and thinking (pp. 257-276). Dordrecht: Kluwer.

delMas, R. C., Garfield, J. B. y Chance, B. L. (1999). A model of classroom research in action: developing simulation activities to improve students´ statistical reasoning. Journal of Statistic Education, 7(3). On line: http://www.amstat.org/publications/jse/secure/v7n3/delmas.cfm

Gal, I. (1997). Assessing students` interpretations of data: Conceptual and pragmatic issues. En B. Phillips (Ed.), Papers on Statistical Education presented at ICME-8 (pp. 49-58). Swinburne University of Technology.

Godino, J. D. (2003). Teoría de las funciones semióticas. Un enfoque semiótico de la cognición e instrucción matemática. Granada, El autor.

Méndez, H. (1991): Understanding the Central Limit Theorem. Tesis Doctoral. Universidad de California. UMI 6369.

Montgomery, D. y Runger, G. (1996). Probabilidad y estadística aplicadas a la ingeniería. México: Mc Graw Hill.

Kahneman, D., Slovic, P. y Tversky, A. (1982). Judgment under uncertainty: Heuristics and biases. New York: Cambridge University Press.

Tauber, L. (2001). Significado y comprensión de la distribución normal a partir de actividades de análisis de datos. Tesis Doctoral. Universidad de Sevilla.

Tauber, L., Batanero, C. y Sánchez, V. (2005). Diseño, implementación y análisis de enseñanza de la distribución normal en un curso universitario., EMA, 9(2), 82-105

Walpole, R., Myers, R. y Myers, S. (1999). Probabilidad y estadística para ingenieros. Sexta edición. México: Prentice may..

Well, A., Pollatsek, A. y Boyce, S. (1990). Understanding the effects of sample size on the variability of the mean. Organizational Behavior and Human Decision Processes, 47, 289-312.

ecoestadistica.com